\(\int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx\) [88]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 119 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {a^{3/2} (7 A+12 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {a^2 (5 A+4 B) \tan (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d} \]

[Out]

1/4*a^(3/2)*(7*A+12*B)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+1/4*a^2*(5*A+4*B)*tan(d*x+c)/d/(a+
a*cos(d*x+c))^(1/2)+1/2*a*A*sec(d*x+c)*(a+a*cos(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {3054, 3059, 2852, 212} \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {a^{3/2} (7 A+12 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {a^2 (5 A+4 B) \tan (c+d x)}{4 d \sqrt {a \cos (c+d x)+a}}+\frac {a A \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d} \]

[In]

Int[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]

[Out]

(a^(3/2)*(7*A + 12*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*d) + (a^2*(5*A + 4*B)*Tan[c
 + d*x])/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (a*A*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {a A \sqrt {a+a \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} \int \sqrt {a+a \cos (c+d x)} \left (\frac {1}{2} a (5 A+4 B)+\frac {1}{2} a (A+4 B) \cos (c+d x)\right ) \sec ^2(c+d x) \, dx \\ & = \frac {a^2 (5 A+4 B) \tan (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{8} (a (7 A+12 B)) \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx \\ & = \frac {a^2 (5 A+4 B) \tan (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}-\frac {\left (a^2 (7 A+12 B)\right ) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d} \\ & = \frac {a^{3/2} (7 A+12 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {a^2 (5 A+4 B) \tan (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.35 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.92 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \left (\sqrt {2} (7 A+12 B) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^2(c+d x)+2 (2 A+(7 A+4 B) \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{8 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^2*(Sqrt[2]*(7*A + 12*B)*ArcTanh[Sqrt[2]*Sin[(c + d
*x)/2]]*Cos[c + d*x]^2 + 2*(2*A + (7*A + 4*B)*Cos[c + d*x])*Sin[(c + d*x)/2]))/(8*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(937\) vs. \(2(103)=206\).

Time = 5.39 (sec) , antiderivative size = 938, normalized size of antiderivative = 7.88

method result size
parts \(\text {Expression too large to display}\) \(938\)
default \(\text {Expression too large to display}\) \(1003\)

[In]

int((a+cos(d*x+c)*a)^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x,method=_RETURNVERBOSE)

[Out]

1/2*A*a^(1/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(28*a*(ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^
(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^
(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^
4+(-28*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2
)*a^(1/2)+2*a))*a-28*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x
+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a-28*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))*sin(1/2*d*x+1/2*c)^2+7*ln(
4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+
2*a))*a+7*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^
(1/2)*a^(1/2)-2*a))*a+18*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^2/(2*c
os(1/2*d*x+1/2*c)-2^(1/2))^2/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+B*a^(1/2)*cos(1/2*d*x+1/2*c)*
(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-6*a*(ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2
)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2
*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^2+2*2^(1/2)*(a*sin(1/2*d*x+1/2*c)
^2)^(1/2)*a^(1/2)+3*ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1
/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+3*ln(-2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a
*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)/(2*cos(1/2*d*x+1/2*c)+2^(1/2))/(2*cos(1/2*d*x+1/2*c)-2^(1/2))/si
n(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.53 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {{\left ({\left (7 \, A + 12 \, B\right )} a \cos \left (d x + c\right )^{3} + {\left (7 \, A + 12 \, B\right )} a \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left ({\left (7 \, A + 4 \, B\right )} a \cos \left (d x + c\right ) + 2 \, A a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

1/16*(((7*A + 12*B)*a*cos(d*x + c)^3 + (7*A + 12*B)*a*cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(
d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d
*x + c)^2)) + 4*((7*A + 4*B)*a*cos(d*x + c) + 2*A*a)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c)^3
+ d*cos(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)**3,x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3339 vs. \(2 (103) = 206\).

Time = 0.50 (sec) , antiderivative size = 3339, normalized size of antiderivative = 28.06 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\text {Too large to display} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

-1/16*((12*a*cos(4*d*x + 4*c)^2*sin(3/2*d*x + 3/2*c) + 48*a*cos(2*d*x + 2*c)^2*sin(3/2*d*x + 3/2*c) + 12*a*sin
(4*d*x + 4*c)^2*sin(3/2*d*x + 3/2*c) + 48*a*sin(2*d*x + 2*c)^2*sin(3/2*d*x + 3/2*c) + 160*a*cos(7/2*d*x + 7/2*
c)*sin(2*d*x + 2*c) + 168*a*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) + 72*a*cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c)
 - 24*a*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) - 4*(a*sin(4*d*x + 4*c) + 2*a*sin(2*d*x + 2*c))*cos(13/2*d*x + 1
3/2*c) + 12*(a*sin(4*d*x + 4*c) + 2*a*sin(2*d*x + 2*c))*cos(11/2*d*x + 11/2*c) + 48*(a*sin(4*d*x + 4*c) + 2*a*
sin(2*d*x + 2*c))*cos(9/2*d*x + 9/2*c) + 4*(12*a*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) - 20*a*sin(7/2*d*x + 7/
2*c) - 21*a*sin(5/2*d*x + 5/2*c) - 3*a*sin(3/2*d*x + 3/2*c))*cos(4*d*x + 4*c) - 7*(sqrt(2)*a*cos(4*d*x + 4*c)^
2 + 4*sqrt(2)*a*cos(2*d*x + 2*c)^2 + sqrt(2)*a*sin(4*d*x + 4*c)^2 + 4*sqrt(2)*a*sin(4*d*x + 4*c)*sin(2*d*x + 2
*c) + 4*sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c) + 2*(2*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2
)*a)*cos(4*d*x + 4*c) + sqrt(2)*a)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*si
n(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c),
 cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 7*(sqr
t(2)*a*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c)^2 + sqrt(2)*a*sin(4*d*x + 4*c)^2 + 4*sqrt(2)*a*sin(4*
d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c) + 2*(2*sqrt(2)*a*c
os(2*d*x + 2*c) + sqrt(2)*a)*cos(4*d*x + 4*c) + sqrt(2)*a)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2
*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arcta
n2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
+ 3/2*c))) + 2) - 7*(sqrt(2)*a*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c)^2 + sqrt(2)*a*sin(4*d*x + 4*c
)^2 + 4*sqrt(2)*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*cos(2*d*x +
 2*c) + 2*(2*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*cos(4*d*x + 4*c) + sqrt(2)*a)*log(2*cos(1/3*arctan2(sin(3
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 -
 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*
x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 7*(sqrt(2)*a*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c)^2 + s
qrt(2)*a*sin(4*d*x + 4*c)^2 + 4*sqrt(2)*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*a*sin(2*d*x + 2*c)^2 +
 4*sqrt(2)*a*cos(2*d*x + 2*c) + 2*(2*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*cos(4*d*x + 4*c) + sqrt(2)*a)*log
(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), co
s(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*si
n(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 4*(a*cos(4*d*x + 4*c) + 2*a*cos(2*d*x + 2*c)
 + a)*sin(13/2*d*x + 13/2*c) - 12*(a*cos(4*d*x + 4*c) + 2*a*cos(2*d*x + 2*c) + a)*sin(11/2*d*x + 11/2*c) - 48*
(a*cos(4*d*x + 4*c) + 2*a*cos(2*d*x + 2*c) + a)*sin(9/2*d*x + 9/2*c) + 4*(12*a*sin(2*d*x + 2*c)*sin(3/2*d*x +
3/2*c) + 20*a*cos(7/2*d*x + 7/2*c) + 21*a*cos(5/2*d*x + 5/2*c) + 9*a*cos(3/2*d*x + 3/2*c))*sin(4*d*x + 4*c) -
80*(2*a*cos(2*d*x + 2*c) + a)*sin(7/2*d*x + 7/2*c) - 84*(2*a*cos(2*d*x + 2*c) + a)*sin(5/2*d*x + 5/2*c) - 24*a
*sin(3/2*d*x + 3/2*c) - 4*(a*cos(4*d*x + 4*c)^2 + 4*a*cos(2*d*x + 2*c)^2 + a*sin(4*d*x + 4*c)^2 + 4*a*sin(4*d*
x + 4*c)*sin(2*d*x + 2*c) + 4*a*sin(2*d*x + 2*c)^2 + 2*(2*a*cos(2*d*x + 2*c) + a)*cos(4*d*x + 4*c) + 4*a*cos(2
*d*x + 2*c) + a)*sin(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 56*(a*cos(4*d*x + 4*c)^2 + 4*a
*cos(2*d*x + 2*c)^2 + a*sin(4*d*x + 4*c)^2 + 4*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*a*sin(2*d*x + 2*c)^2 +
2*(2*a*cos(2*d*x + 2*c) + a)*cos(4*d*x + 4*c) + 4*a*cos(2*d*x + 2*c) + a)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c)
, cos(3/2*d*x + 3/2*c))))*A*sqrt(a)/(sqrt(2)*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(4
*d*x + 4*c)^2 + 4*sqrt(2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*sin(2*d*x + 2*c)^2 + 2*(2*sqrt(2)*cos(
2*d*x + 2*c) + sqrt(2))*cos(4*d*x + 4*c) + 4*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2)) + 4*(2*sqrt(2)*a*cos(7/2*d*x
+ 7/2*c)*sin(2*d*x + 2*c) + 6*sqrt(2)*a*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) + (2*sqrt(2)*a*sin(3/2*d*x + 3/2
*c) + 6*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(
2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d
*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x +
 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) +
3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1
/2*d*x + 1/2*c) + 2))*cos(2*d*x + 2*c)^2 + (2*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 6*sqrt(2)*a*sin(1/2*d*x + 1/2*c
) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*s
in(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x
 + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2
- 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*
sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(2*d*x + 2*c
)^2 - 4*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 4*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 2*(sqrt(2)*a*sin(3/2*d*x + 3/2*c)
- 5*sqrt(2)*a*sin(1/2*d*x + 1/2*c) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*c
os(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x +
 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2
*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*
log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d
*x + 1/2*c) + 2))*cos(2*d*x + 2*c) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*c
os(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x +
 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2
*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*
log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d
*x + 1/2*c) + 2) - 2*(sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*sin(7/2*d*x + 7/2*c) - 6*(sqrt(2)*a*cos(2*d*x +
2*c) + sqrt(2)*a)*sin(5/2*d*x + 5/2*c) + 2*(3*sqrt(2)*a*cos(3/2*d*x + 3/2*c) + sqrt(2)*a*cos(1/2*d*x + 1/2*c))
*sin(2*d*x + 2*c))*B*sqrt(a)/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1))/d

Giac [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.69 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=-\frac {\sqrt {2} {\left (\sqrt {2} {\left (7 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 12 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) + \frac {4 \, {\left (14 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 8 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 9 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 4 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}\right )} \sqrt {a}}{16 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="giac")

[Out]

-1/16*sqrt(2)*(sqrt(2)*(7*A*a*sgn(cos(1/2*d*x + 1/2*c)) + 12*B*a*sgn(cos(1/2*d*x + 1/2*c)))*log(abs(-2*sqrt(2)
 + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))) + 4*(14*A*a*sgn(cos(1/2*d*x + 1/2*c))*sin(
1/2*d*x + 1/2*c)^3 + 8*B*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 9*A*a*sgn(cos(1/2*d*x + 1/2*c))*
sin(1/2*d*x + 1/2*c) - 4*B*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c))/(2*sin(1/2*d*x + 1/2*c)^2 - 1)^2)
*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^3} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^3,x)

[Out]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^3, x)